Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1335897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410738

RESUMEN

It has been demonstrated that supplementing late-gestation cow diets with NCG (N-carbamoylglutamic acid) increases the serum protein level, boosts immunological function, and increases the birth weight of the calves. However, the underlying mechanism remains unclear. In this experiment, 30 late-gestation Angus heifers almost at same conditions were chosen for this experiment. They were randomly divided into two groups of 15 cows each. A basal diet was provided to the control group, and 30 g/(d-head) of NCG was added to the basal diet of the test group (NCG group). Blood samples were collected from the jugular vein after birth and before the end (when the calves were 90 days old) of the experiment for plasma metabolomics analysis. The metabolomics analysis identified 53 metabolites between the NCG group and control group, with 40 significantly up-regulated and 13 significantly down-regulated. Among them, 33 lipids and lipid-like molecules made up 57.89% of all the metabolites that were found. Thirty-three metabolic pathways enriched by metabolites showed p.adjust <0.05, among which glycerophospholipid and sphingolipid metabolism pathways were the most abundant. In conclusion, the addition of NCG in late-gestation cows appears to primarily affect calf growth and development through the regulation of phospholipid metabolism, which plays a role in nerve conduction, brain activity, and cell metabolism and function. This study provides valuable insights into how nutritional supplementation by late-gestation cows might improve the growth and development of newborn calves.

2.
Front Vet Sci ; 11: 1348850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420208

RESUMEN

With the development of modern sheep raising technology, the increasing density of animals in sheep house leads to the accumulation of microbial aerosols in sheep house. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in sheep house to solve the problems of air pollution and disease prevention and control in sheep house. In this study, the microorganisms present in the air of sheep houses were investigated to gain insights into the structure of bacterial communities and the prevalence of pathogenic bacteria. Samples from six sheep pens in each of three sheep farms, totaling 18, were collected in August 2022 from Ningxia province, China. A high-volume air sampler was utilized for aerosol collection within the sheep housing followed by DNA extraction for 16S rRNA sequencing. Employing high-throughput 16S rRNA sequencing technology, we conducted an in-depth analysis of microbial populations in various sheep pen air samples, enabling us to assess the community composition and diversity. The results revealed a total of 11,207 operational taxonomic units (OTUs) within the bacterial population across the air samples, encompassing 152 phyla, 298 classes, 517 orders, 853 families, 910 genera, and 482 species. Alpha diversity and beta diversity analysis indicated that differences in species diversity, evenness and coverage between different samples. At the bacterial phylum level, the dominant bacterial groups are Firmicutes, Proteobacteria, and Actinobacteria, among which Firmicutes (97.90-98.43%) is the highest. At the bacterial genus level, bacillus, Bacteroides, Fusobacterium, etc. had higher abundance, with Bacillus (85.47-89.87%) being the highest. Through an in-depth analysis of microbial diversity and a meticulous examination of pathogenic bacteria with high abundance in diverse sheep house air samples, the study provided valuable insights into the microbial diversity, abundance, and distinctive features of prevalent pathogenic bacteria in sheep house air. These findings serve as a foundation for guiding effective disease prevention and control strategies within sheep farming environments.

3.
Biol Futur ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300414

RESUMEN

Invasive alien species can affect plant taxonomic and functional diversity. Multiple invasive alien species can co-invade the same plant community. However, the effects of such co-invasion on plant taxonomic and functional diversity are currently unclear. Our study aimed to estimate the effects of co-invasion by three Asteraceae invasive alien species (i.e., Conyza canadensis (L.) Cronquist, Conyza sumatrensis (S.F. Blake) Pruski and G. Sancho, and Solidago canadensis L.) on plant taxonomic and functional diversity in herbaceous ruderal communities in southern Jiangsu, China. The effects of these three invasive alien species under seven invasion combinations (including invasion by one invasive alien species, co-invasion by two invasive alien species, and co-invasion by these three invasive alien species) on plant taxonomic and functional diversity were investigated in a comparative field study of herbaceous ruderal communities. Niche differentiation mediated the functional divergence between these three invasive alien species and natives under all invasion combinations. These three invasive alien species significantly increased plant taxonomic diversity (especially plant diversity and richness) and plant functional diversity (especially Rao's quadratic entropies) under all invasion combinations. The relative abundance of invasive alien species was significantly positively associated with plant functional diversity (especially community-weighted mean trait values and Rao's quadratic entropy). The number of invasive alien species was significantly positively associated with plant taxonomic diversity (especially plant diversity and richness) and plant functional diversity (especially Rao's quadratic entropies). Thus, co-invasion by these three invasive alien species may synergistically increase plant taxonomic diversity (especially plant diversity and richness) and functional diversity (especially Rao's quadratic entropies).

5.
Plants (Basel) ; 12(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447084

RESUMEN

Invasive and native plants can coexist in the same habitat; however, the decomposition process may be altered by the mixing of invasive and native leaves. Heavy metal contamination may further alter the co-decomposition of both leaf types. This study evaluated the effects of two concentrations (35 mg·L-1 and 70 mg·L-1) and three types (Pb, Cu, and combined Pb + Cu) of heavy metal contamination on the co-decomposition of leaves of the invasive tree Rhus typhina L. and the native tree Koelreuteria paniculata Laxm, as well as the mixed effect intensity of the co-decomposition of the mixed leaves. A polyethylene litterbag experiment was performed over six months. The decomposition coefficient of the two trees, mixed effect intensity of the co-decomposition, soil pH and enzymatic activities, soil bacterial alpha diversity, and soil bacterial community structure were determined. A high concentration of Pb and combined Pb + Cu significantly reduced the decomposition rate of R. typhina leaves. A high concentration of Pb or Cu significantly reduced the decomposition rate of the mixed leaves. In general, R. typhina leaves decomposed faster than K. paniculata leaves did. There were synergistic effects observed for the co-decomposition of the mixed leaves treated with combined Pb + Cu, regardless of concentration, but there were antagonistic effects observed for the co-decomposition of the mixed leaves treated with either Pb or Cu, regardless of concentration. A high concentration of Pb or Cu may increase antagonistic effects regarding the co-decomposition of mixed-leaf groups. Thus, heavy metal contamination can significantly affect the intensity of the mixed effect on the co-decomposition of heterogeneous groups of leaves.

6.
Ecotoxicology ; 32(1): 114-126, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36652123

RESUMEN

Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.


Asunto(s)
Lluvia Ácida , Asteraceae , Solidago , Germinación , Alelopatía , Plantones , Extractos Vegetales
7.
Ecotoxicol Environ Saf ; 243: 114012, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030689

RESUMEN

Co-invasion by two invasive plant species (IPS) can occur in the same habitat. Diversified acid deposition may change the co-invasion process by altering litter decomposition and plant-soil feedback signalling. This study examined the co-decomposition of two Asteraceae IPS (Solidago canadensis L. and Bidens pilosa L.) on litter decomposition rate, soil enzyme activities, and soil N-fixing bacterial communities under diversified acid deposition (mixed acid deposition at pH 5.6 and at pH 4.5, sulfuric acid at pH 4.5, and nitric acid at pH 4.5). B. pilosa litter degraded faster than S. canadensis litter. Acid deposition at higher acidity accelerated the decomposition rate of both pure S. canadensis litter and the equally mixed litters from the two Asteraceae IPS. Antagonistic responses may occur during the co-decomposition of the two Asteraceae IPS with mixed acid deposition, regardless of the pH, as well as with nitric acid deposition at pH 4.5; in contrast, there may be neutral responses for the co-decomposition process with sulfuric acid at pH 4.5. The type of acid deposited may be one of the key factors affecting the intensity of the mixing effect affecting the co-decomposition. Acid deposition at higher acidity weakened the antagonistic responses for the co-decomposition of the two Asteraceae IPS compared with the response to weak acids. Together, these results indicate that acid deposition at higher acidity could facilitate the co-invasion of the two Asteraceae IPS mainly through accelerated litter decomposition as well as weakened antagonistic responses for co-decomposition.


Asunto(s)
Asteraceae , Solidago , Ecosistema , Especies Introducidas , Ácido Nítrico , Hojas de la Planta , Plantas , Suelo/química , Ácidos Sulfúricos
8.
An Acad Bras Cienc ; 94(2): e20201661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35703691

RESUMEN

This study aimed to estimate the allelopathic intensity of four Asteraceae invasive plant species (IPS), including Conyza canadensis (L.) Cronq., Erigeron annuus (L.) Pers., Bidens pilosa (L.), and Aster subulatus Michx., by testing the effect of leaf extracts on the seed germination and seedling growth (SGe and SGr) of lettuce (Lactuca sativa L.) in combination with two particle sizes of silver nanoparticles. These four IPS decreased the germination of lettuce seeds but increased the growth of lettuce seedlings. The allelopathic intensity of the four IPS decreased in the following order: B. pilosa > C. canadensis > E. annuus > A. subulatus. Silver nanoparticles decreased the SGe and SGr of lettuce. The 20 nm silver nanoparticles affected the competition intensity for water and the absorption of inorganic salts by lettuce more intensively than the 80 nm nanoparticles. Silver nanoparticles intensify the allelopathic intensity of the four invasive plant species on the SGe and SGr of lettuce. The allelopathic intensity of B. pilosa was higher than that of the other three IPS when they were polluted with silver nanoparticles. Thus, silver nanoparticles could facilitate the invasion process of the four IPS, particularly B. pilosa, via an increase in the intensity of allelopathy.


Asunto(s)
Asteraceae , Nanopartículas del Metal , Alelopatía , Germinación , Especies Introducidas , Lactuca , Extractos Vegetales/farmacología , Plantones , Plata/farmacología
9.
Virulence ; 13(1): 875-889, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35531887

RESUMEN

Autophagic isolation and degradation of intracellular pathogens are employed by host cells as primary innate immune defense mechanisms to control intercellular M. bovis infection. In this study, RNA-Seq technology was used to obtain the total mRNA from bone marrow-derived macrophages (BMDMs) infected with M. bovis at 6 and 24 h after infection. One of the differential genes, GBP2b, was also investigated. Analysis of the significant pathway involved in GBP2b-coexpressed mRNA demonstrated that GBP2b was associated with autophagy and autophagy-related mammalian target of rapamycin (mTOR) signaling and AMP-activated protein kinase (AMPK) signaling. The results of in vivo and in vitro experiments showed significant up-regulation of GBP2b during M. bovis infection. For in vitro validation, small interfering RNA-GBP2b plasmids were transfected into BMDMs and RAW264.7 cells lines to down-regulate the expression of GBP2b. The results showed that the down-regulation of GBP2b impaired autophagy via the AMPK/mTOR/ULK1 pathway, thereby promoting the intracellular survival of M. bovis. Further studies revealed that the activation of AMPK signaling was essential for the regulation of autophagy during M. bovis infection. These findings expand the understanding of how GBP2b regulates autophagy and suggest that GBP2b may be a potential target for the treatment of diseases caused by M. bovis.


Asunto(s)
Mycobacterium bovis , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , Proteínas Portadoras , Mycobacterium bovis/genética , ARN Mensajero , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Probiotics Antimicrob Proteins ; 14(1): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34642879

RESUMEN

Macrobrachium rosenbergii is an economically important source of crustacean seafood worldwide. Vibrio parahaemolyticus is an important aquatic pathogen that causes epidemics of acute hepatopancreatic necrosis in shrimp populations, which results in significant economic losses to aquaculture farmers. To prevent the antibiotics abuse, which has become a serious threat to human health, novel anti-infective strategies are urgently required to control V. parahaemolyticus. Antimicrobial peptides, which exhibit favourable germicidal activity compared to traditional antibiotics, can be used as a key method to prevent and treat bacterial diseases. Herein, an antimicrobial peptide, bomidin, was expressed through genetic engineering technology. The minimum inhibitory concentration (MIC) of bomidin showed a significant inhibitory effect on V. parahaemolyticus that was equivalent to that of ampicillin. Subsequently, the mechanism of action of recombinant bomidin was explored using PNP and ONPG assays to investigate the effects on membrane permeability. These assays indicated that bomidin penetrated the germ membrane and induced the release of cytoplasmic contents and ultimately interacted with DNA to form a bomidin-DNA complex that inhibits bacterial survival. Transmission electron microscopy and scanning electron microscopy revealed that bomidin could cause damage and dysfunction to the cell wall and membrane. Bomidin was nontoxic to mouse red blood cells within a concentration range that was much larger than the MIC. Toxicity assays revealed that 0.02 mg/mL bomidin was safe for use with juvenile freshwater prawns of M. rosenbergii and significantly inhibited the growth of V. parahaemolyticus in cultured water. These results demonstrated that synthetic peptide bomidin had great antibacterial effect against V. parahaemolyticus and therefore a therapeutic potential in aquaculture.


Asunto(s)
Palaemonidae , Vibrio parahaemolyticus , Animales , Péptidos Antimicrobianos , Acuicultura , Ratones , Pruebas de Sensibilidad Microbiana
11.
Sci Total Environ ; 813: 152628, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34963604

RESUMEN

Two invasive plant species (IPS) can co-invade the same plant community. As the number of IPS increases under the co-invasion of two IPS, plant taxonomic and functional diversity, community invasibility, community stability, invasion resistance, and invasion intensity and invasiveness of IPS and their interrelationships may be altered. This study aimed to quantify the contribution of plant taxonomic and functional diversity, community invasibility, community stability, and invasion intensity and invasiveness of IPS to the invasion resistance of native plant communities under the co-invasion of the two IPS Erigeron annuus (L.) Pers. and Solidago canadensis L. in eastern China. This study also defined a method to quantify the invasion resistance of native plant communities designated the invasion resistance index. The community-weighted mean trait values of native plants and plant diversity are the factors that are the most critical to determine the invasion resistance of native plant communities. Thus, the invasion resistance of native plant communities primarily depends on the three following factors: the relative abundance of natives, the growth performance of natives, and the diversity of natives. All levels of invasion significantly decrease the invasion resistance of native plant communities. The two IPS antagonistically affect the invasion resistance of native plant communities less under co-invasion compared with their independent invasion.


Asunto(s)
Erigeron , Solidago , Ecosistema , Especies Introducidas , Plantas
12.
Physiol Mol Biol Plants ; 27(3): 483-495, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33854278

RESUMEN

The effect of allelopathy from invasive alien plants (IAPs) on native species is one of the main factors for their adaptation and diffusion. IAPs can have different degrees of invasion under natural succession and are distributed in numerous regions. Seed germination and seedling growth (SGe-SGr) play a crucial role in population recruitment. Thus, it is critical to illustrate the differences in the allelopathy caused by an IAP with different degrees of invasion in numerous regions on SGe-SGr of native species to describe the primary force behind their adaptation and diffusion. This study assessed the allelopathy of the notorious IAP horseweed (Conyza canadensis (L.) Cronq.) on SGe-SGr of the native lettuce species (Lactuca sativa L.) under different degrees of invasion (light degree of invasion and heavy degree of invasion) in three provinces (Jiangsu, Anhui, and Hubei) along the Yangtze River in China. The allelopathy of horseweed leaf extract on lettuce SGe-SGr remarkably increased with the increased degree of invasion, which may be due to the buildup of allelochemicals generated by horseweed with a heavy degree of invasion compared with a light degree of invasion. A high concentration of horseweed leaf extract resulted in noticeably stronger allelopathy on lettuce SGe-SGr compared to the extract with a low concentration. There are noticeable differences in the allelopathy of the extract of horseweed leaves from different provinces on lettuce SGe-SGr with the following order i.e. Jiangsu > Hubei > Anhui. This may be due to the high latitudes for the three sampling sites in Jiangsu compared with the latitudes for the collection sites in Hubei and Anhui. There are certain differences in the environments among the three provinces. Thus, the allelopathy of horseweed on SGe-SGr of lettuce may have a greater negative impact in Jiangsu compared to the other two provinces. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00962-y.

13.
Appl Opt ; 51(7): B42-8, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22410924

RESUMEN

The laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) technique has demonstrated its validity to enhance the optical emission of laser-induced plasma. It has the potential to improve the performance of traditional LIBS measurement. Very recently, LA-FPDPS with a nanosecond pulse discharge circuit has been developed, which has a better capability to enhance the optical emission intensity of laser plasma compared with that using a microsecond pulse discharge circuit. In this paper, the effect of the discharge capacitance and discharge voltage on the optical emission of soil plasma generated by LA-FPDPS with a nanosecond pulse discharge circuit is evaluated in detail. In addition, the stability of the time delay between the laser firing and discharge, and between the discharge and optical emission, has been carefully investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...